Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109592, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38628966

RESUMEN

The Escherichia coli outer membrane channel TolC complexes with several inner membrane efflux pumps to export compounds across the cell envelope. All components of these complexes are essential for robust efflux activity, yet E. coli is more sensitive to antimicrobial compounds when tolC is inactivated compared to the inactivation of genes encoding the inner membrane drug efflux pumps. While investigating these susceptibility differences, we identified a distinct class of inhibitors targeting the core-lipopolysaccharide translocase, MsbA. We show that tolC null mutants are sensitized to structurally unrelated MsbA inhibitors and msbA knockdown, highlighting a synthetic-sick interaction. Phenotypic profiling revealed that tolC inactivation induced cell envelope softening and increased outer membrane permeability. Overall, this work identified a chemical probe of MsbA, revealed that tolC is associated with cell envelope mechanics and integrity, and highlighted that these findings should be considered when using tolC null mutants to study efflux deficiency.

2.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578824

RESUMEN

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Asunto(s)
Antibacterianos , Girasa de ADN , Escherichia coli , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/genética , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana
3.
Cell Rep Methods ; 4(1): 100693, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38262349

RESUMEN

Advances in gene editing, in particular CRISPR interference (CRISPRi), have enabled depletion of essential cellular machinery to study the downstream effects on bacterial physiology. Here, we describe the construction of an ordered E. coli CRISPRi collection, designed to knock down the expression of 356 essential genes with the induction of a catalytically inactive Cas9, harbored on the conjugative plasmid pFD152. This mobile CRISPRi library can be conjugated into other ordered genetic libraries to assess combined effects of essential gene knockdowns with non-essential gene deletions. As proof of concept, we probed cell envelope synthesis with two complementary crosses: (1) an Lpp deletion into every CRISPRi knockdown strain and (2) the lolA knockdown plasmid into the Keio collection. These experiments revealed a number of notable genetic interactions for the essential phenotype probed and, in particular, showed suppressing interactions for the loci in question.


Asunto(s)
Escherichia coli , Genes Esenciales , Edición Génica , Técnicas de Silenciamiento del Gen , Biblioteca de Genes
4.
Nat Chem Biol ; 19(11): 1342-1350, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37231267

RESUMEN

Acinetobacter baumannii is a nosocomial Gram-negative pathogen that often displays multidrug resistance. Discovering new antibiotics against A. baumannii has proven challenging through conventional screening approaches. Fortunately, machine learning methods allow for the rapid exploration of chemical space, increasing the probability of discovering new antibacterial molecules. Here we screened ~7,500 molecules for those that inhibited the growth of A. baumannii in vitro. We trained a neural network with this growth inhibition dataset and performed in silico predictions for structurally new molecules with activity against A. baumannii. Through this approach, we discovered abaucin, an antibacterial compound with narrow-spectrum activity against A. baumannii. Further investigations revealed that abaucin perturbs lipoprotein trafficking through a mechanism involving LolE. Moreover, abaucin could control an A. baumannii infection in a mouse wound model. This work highlights the utility of machine learning in antibiotic discovery and describes a promising lead with targeted activity against a challenging Gram-negative pathogen.


Asunto(s)
Acinetobacter baumannii , Aprendizaje Profundo , Animales , Ratones , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
5.
Nat Microbiol ; 8(6): 1026-1038, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37127701

RESUMEN

Treating multidrug-resistant infections has increasingly relied on last-resort antibiotics, including polymyxins, for example colistin. As polymyxins are given routinely, the prevalence of their resistance is on the rise and increases mortality rates of sepsis patients. The global dissemination of plasmid-borne colistin resistance, driven by the emergence of mcr-1, threatens to diminish the therapeutic utility of polymyxins from an already shrinking antibiotic arsenal. Restoring sensitivity to polymyxins using combination therapy with sensitizing drugs is a promising approach to reviving its clinical utility. Here we describe the ability of the biotin biosynthesis inhibitor, MAC13772, to synergize with colistin exclusively against colistin-resistant bacteria. MAC13772 indirectly disrupts fatty acid synthesis (FAS) and restores sensitivity to the last-resort antibiotic, colistin. Accordingly, we found that combinations of colistin and other FAS inhibitors, cerulenin, triclosan and Debio1452-NH3, had broad potential against both chromosomal and plasmid-mediated colistin resistance in chequerboard and lysis assays. Furthermore, combination therapy with colistin and the clinically relevant FabI inhibitor, Debio1452-NH3, showed efficacy against mcr-1 positive Klebsiella pneumoniae and colistin-resistant Escherichia coli systemic infections in mice. Using chemical genomics, lipidomics and transcriptomics, we explored the mechanism of the interaction. We propose that inhibiting FAS restores colistin sensitivity by depleting lipid synthesis, leading to changes in phospholipid composition. In all, this work reveals a surprising link between FAS and colistin resistance.


Asunto(s)
Colistina , Infecciones por Escherichia coli , Animales , Ratones , Colistina/farmacología , Colistina/uso terapéutico , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polimixinas/farmacología , Polimixinas/uso terapéutico , Infecciones por Escherichia coli/microbiología , Ácidos Grasos/farmacología
6.
ACS Appl Mater Interfaces ; 15(12): 16253-16265, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926806

RESUMEN

Surface-mediated transmission of pathogens is a major concern with regard to the spread of infectious diseases. Current pathogen prevention methods on surfaces rely on the use of biocides, which aggravate the emergence of antimicrobial resistance and pose harmful health effects. In response, a bifunctional and substrate-independent spray coating is presented herein. The bifunctional coating relies on wrinkled polydimethylsiloxane microparticles, decorated with biocidal gold nanoparticles to induce a "repel and kill" effect against pathogens. Pathogen repellency is provided by the structural hierarchy of the microparticles and their surface chemistry, whereas the kill mechanism is achieved using functionalized gold nanoparticles embedded on the microparticles. Bacterial tests with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa reveal a 99.9% reduction in bacterial load on spray-coated surfaces, while antiviral tests with Phi6─a bacterial virus often used as a surrogate to SARS-CoV-2─demonstrate a 98% reduction in virus load on coated surfaces. The newly developed spray coating is versatile, easily applicable to various surfaces, and effective against various pathogens, making it suitable for reducing surface contamination in frequently touched, heavy traffic, and high-risk surfaces.


Asunto(s)
Desinfectantes , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Oro/farmacología , Nanopartículas del Metal/química , Desinfectantes/farmacología , Bacterias , Antibacterianos/química
7.
Small ; 19(12): e2205761, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587985

RESUMEN

Engineered surfaces that repel pathogens are of great interest due to their role in mitigating the spread of infectious diseases. A robust, universal, and scalable omniphobic spray coating with excellent repellency against water, oil, and pathogens is presented. The coating is substrate-independent and relies on hierarchically structured polydimethylsiloxane (PDMS) microparticles, decorated with gold nanoparticles (AuNPs). Wettability studies reveal the relationship between surface texturing of micro- and/or nano-hierarchical structures and the omniphobicity of the coating. Studies of pathogen transfer with bacteria and viruses reveal that an uncoated contaminated glove transfers pathogens to >50 subsequent surfaces, while a coated glove picks up 104 (over 99.99%) less pathogens upon first contact and transfers zero pathogens after the second touch. The developed coating also provides excellent stability under harsh conditions. The remarkable anti-pathogen properties of this surface combined with its ease of implementation, substantiate its use for the prevention of surface-mediated transmission of pathogens.


Asunto(s)
Oro , Nanopartículas del Metal , Propiedades de Superficie , Interacciones Hidrofóbicas e Hidrofílicas , Tacto
8.
Nucleic Acids Res ; 51(D1): D690-D699, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36263822

RESUMEN

The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation and interpretation of resistomes. As of version 3.2.4, CARD encompasses 6627 ontology terms, 5010 reference sequences, 1933 mutations, 3004 publications, and 5057 AMR detection models that can be used by the accompanying Resistance Gene Identifier (RGI) software to annotate genomic or metagenomic sequences. Focused curation enhancements since 2020 include expanded ß-lactamase curation, incorporation of likelihood-based AMR mutations for Mycobacterium tuberculosis, addition of disinfectants and antiseptics plus their associated ARGs, and systematic curation of resistance-modifying agents. This expanded curation includes 180 new AMR gene families, 15 new drug classes, 1 new resistance mechanism, and two new ontological relationships: evolutionary_variant_of and is_small_molecule_inhibitor. In silico prediction of resistomes and prevalence statistics of ARGs has been expanded to 377 pathogens, 21,079 chromosomes, 2,662 genomic islands, 41,828 plasmids and 155,606 whole-genome shotgun assemblies, resulting in collation of 322,710 unique ARG allele sequences. New features include the CARD:Live collection of community submitted isolate resistome data and the introduction of standardized 15 character CARD Short Names for ARGs to support machine learning efforts.


Asunto(s)
Curaduría de Datos , Bases de Datos Factuales , Farmacorresistencia Microbiana , Aprendizaje Automático , Antibacterianos/farmacología , Genes Bacterianos , Funciones de Verosimilitud , Programas Informáticos , Anotación de Secuencia Molecular
9.
mBio ; 13(4): e0122522, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35920556

RESUMEN

Over the past 20 years, we have learned that bacterial small noncoding RNAs (sRNAs) can rapidly effect changes in gene expression in response to stress. However, the broader role and impact of sRNA-mediated regulation in promoting bacterial survival has remained elusive. Indeed, there are few examples where disruption of sRNA-mediated gene regulation results in a discernible change in bacterial growth or survival. The lack of phenotypes attributable to loss of sRNA function suggests that either sRNAs are wholly dispensable or functional redundancies mask the impact of deleting a single sRNA. We investigated synthetic genetic interactions among sRNA genes in Escherichia coli by constructing pairwise deletions in 54 genes, including 52 sRNAs. Some 1,373 double deletion strains were studied for growth defects under 32 different nutrient stress conditions and revealed 1,131 genetic interactions. In one example, we identified a profound synthetic lethal interaction between ArcZ and CsrC when E. coli was grown on pyruvate, lactate, oxaloacetate, or d-/l-alanine, and we provide evidence that the expression of ppsA is dysregulated in the double deletion background, causing the conditionally lethal phenotype. This work employs a unique platform for studying sRNA-mediated gene regulation and sheds new light on the genetic network of sRNAs that underpins bacterial growth. IMPORTANCE sRNAs have long been purported to be a critical mechanism by which bacteria respond to stress; however, uncovering growth phenotypes for sRNA deletion strains in E. coli and related bacteria has proven particularly challenging. In contrast, the deletion of hfq, a chaperone required for the activity of many sRNAs in E. coli, results in striking growth defects in E. coli under a variety of medium conditions and chemical stressors. Here, we examined the importance of hfq and sRNA deletion strains for E. coli growth in nutrient-limited medium supplemented with 30 different carbon sources. We then systematically combined sRNA deletion mutations, creating a library of 1,373 sRNA double deletion strains, which we screened for growth under the same conditions, yielding 43,936 individual growth measurements. Our data uncovered more than 1,000 growth phenotypes for sRNA double deletion strains, shedding light on complicated networks of sRNA regulation that underpin bacterial survival under nutrient stress.


Asunto(s)
ARN Pequeño no Traducido , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo
10.
Small ; 18(15): e2108112, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35224860

RESUMEN

The surface fouling of biomedical devices has been an ongoing issue in healthcare. Bacterial and blood adhesion in particular, severely impede the performance of such tools, leading to poor patient outcomes. Various structural and chemical modifications have been shown to reduce fouling, but all existing strategies lack the combination of physical, chemical, and economic traits necessary for widespread use. Herein, a lubricant infused, hierarchically micro- and nanostructured polydimethylsiloxane surface is presented. The surface is easy to produce and exhibits the high flexibility and optical transparency necessary for incorporation into various biomedical tools. Tests involving two clinically relevant, priority pathogens show up to a 98.5% reduction in the biofilm formation of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. With blood, the surface reduces staining by 95% and suppresses thrombin generation to background levels. Furthermore, the surface shows applicability within applications such as catheters, extracorporeal circuits, and microfluidic devices, through its effectiveness in dynamic conditions. The perfusion of bacterial media shows up to 96.5% reduction in bacterial adhesion. Similarly, a 95.8% reduction in fibrin networks is observed following whole blood perfusion. This substrate stands to hold high applicability within biomedical systems as a means to prevent fouling, thus improving performance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Trombosis , Adhesión Bacteriana , Biopelículas , Dimetilpolisiloxanos , Humanos , Propiedades de Superficie
11.
ACS Nano ; 14(1): 454-465, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31834780

RESUMEN

Healthcare acquired infections are a major human health problem, and are becoming increasingly troublesome with the emergence of drug resistant bacteria. Engineered surfaces that reduce the adhesion, proliferation, and spread of bacteria have promise as a mean of preventing infections and reducing the use of antibiotics. To address this need, we created a flexible plastic wrap that combines a hierarchical wrinkled structure with chemical functionalization to reduce bacterial adhesion, biofilm formation, and the transfer of bacteria through an intermediate surface. These hierarchical wraps were effective for reducing biofilm formation of World Health Organization-designated priority pathogens Gram positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram negative Pseudomonas aeruginosa by 87 and 84%, respectively. In addition, these surfaces remain free of bacteria after being touched by a contaminated surface with Gram negative E. coli. We showed that these properties are the result of broad liquid repellency of the engineered surfaces and the presence of reduced anchor points for bacterial adhesion on the hierarchical structure. Such wraps are fabricated using scalable bottom-up techniques and form an effective cover on a variety of complex objects, making them superior to top-down and substrate-specific surface modification methods.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Plásticos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plásticos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA